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Abstract

The problem of the dynamic response of flat rectangular sandwich panels subjected to underwater and in-air explo-
sions is analyzed. The study is carried out in the framework of a geometrically non-linear model of sandwich structures
featuring anisotropic laminated face sheets and an orthotropic core, in conjunction with the unsteady pressure gener-
ated by an explosion. Effects of the core and of the orthotropy of its material, as well as those related to the ply-thick-
ness, directional material property and stacking sequence of face sheets, geometrical non-linearities and of the structural
damping ratio are investigated, and their implications upon the dynamic response are highlighted. To the best of the
authors� knowledge, the specialized literature addressing the dynamic response of sandwich structures to underwater
and in-air explosions is rather scanty. This work is likely to fill a gap in the specialized literature on this topic.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In modern warfare, naval ships can be exposed to blasts generated by underwater and in-air explosions
that can inflict significant damage to their structure. For a reliable structural design of warships against
underwater and air-blast, proper expressions of the related blast loading obtained by using fluid-structure
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interaction models, and accurate as possible predictions of structural response are required. A good under-
standing of pertinent factors that decide upon the structural response constitutes an essential pre-requisite
toward assessment of the vulnerability and survivability of structures impacted by such explosive pulses.
This is valid also for the aeronautical/aerospace structures.

During the last years, for reasons related, among others, to improved fatigue performance, superior en-
ergy absorption that yields an increased resistance to impact, reduced susceptibility to corrosion, superior
thermal and acoustic insulation, an increased interest for the extensive incorporation of sandwich compos-
ites in the construction of naval ships and submarines has been manifested.

This trend was outlined in the extensive review-paper by Mouritz et al. (2001), as well as in the works of
the very recent international conference on sandwich constructions, (see the proceedings edited by Vinson
et al. (2003)), where the achievements in this area have been presented, and the potential benefits of the
incorporation of sandwich composites in the construction of a variety of naval vessels, including the mil-
itary ones, have been discussed.

In the same sense, the results by Xue and Hutchinson (2004) reveal the superior performance of metal
sandwich panels in blast resistant structures, in general, and in water blast, in particular, when comparing
with their solid panels counterparts.

The increasing interest in sandwich constructions was reaffirmed also by the appearance of a number of
review articles where thorough analyses of the state-of-the-art have been carried out (see e.g. Noor et al.,
1996; Abrate, 1997; Vinson, 2001; Frostig, 2003; Hohe and Librescu, 2004).

In the context of the incorporation of sandwich structures in the naval ship constructions, and toward
their better design, as one of the necessary requirements, a good as possible understanding of the effects of
blasts generated by the underwater and in-air explosions (identified in the sequel by the acronyms, UNDEX
and INEX, respectively), and of structural features of sandwich panels on their dynamic response should be
reached.

A complexity associated with this issue arises from the fact that the determination of the pressure time-
history induced by an underwater explosion acting on a sandwich panel involves a more complex analysis
than in the case of their monolithic or laminated panel counterparts.

The issue of the dynamic response of sandwich flat panels to time-dependent loads generated by under-
water and in-air explosions will be considered in the next developments. In the former case, one supposes
that we deal with a submerged panel, while in the latter one, with a topside sandwich panel of ship super-
structures, or with a panel of an aeronautical/aerospace sandwich construction. In this context, in order to
put into evidence the implications of various non-classical effects, such as those of geometrical non-linear-
ities, initial geometric imperfections, anisotropy of face sheets and their ply-sequence, transverse shear
orthotropy properties of the core layer, etc., an advanced model of sandwich constructions will be used.
The basic equations of this structural model have been derived in a number of previous papers, (Librescu
et al., 1997a,b, 2000).

Having in view the complexity of the dynamic response to explosive blasts, the sandwich model was con-
sidered in the context described above, where a number of important features have been incorporated. For
the same reasons, the analysis is restricted here to flat panels, only.

One should remark that in the last years a number of highly encompassing models of sandwich and mul-
tilayered composite structures have been developed by Vu-Quoc et al. (1997, 2001) and by Vu-Quoc and
Ebcioglu (2000a,b) and Vu-Quoc and Tan (2003), respectively, and by Carrera (1998).

It should also be mentioned that with the exception of the works by Moyer et al. (1992), Hayman (1995),
Mäkinen (1999a,b), Librescu et al. (2004) and Fleck and Deshpande (2004), where special issues on the dy-
namic response of sandwich flat panels and beams to underwater explosions have been explored, no other
studies on this topic are available in the specialized literature. On the other hand, studies on dynamic
response to in-air explosive blasts on standard laminated composite panels have been carried out, among
others, by Birman and Bert (1987), Librescu and Nosier (1990) and Vinson (1999).
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2. Basic assumptions on the structural model

For the sandwich panel considered in this study, one assumes that the global middle plane is selected to
coincide with that of the core layer. Its points are referred to a curvilinear and orthogonal coordinate sys-
tem xa(a = 1,2). The through-the-thickness coordinate x3 is considered positive when measured in the
downward direction. For the sake of convenience, the quantities affiliated with the core layer are identified
by a superposed bar, while the ones associated with the bottom and top face sheets are identified by single
and double primes, respectively. Consistent with this convention, the uniform thickness of the core is de-
noted by 2�h, while those of the upper and bottom face sheets, as h00 and h 0, respectively. As a result,
Hð� 2�hþ h0 þ h00Þ is the total thickness of the structure, (see Fig. 1). In this study, symmetric sandwich pan-
els are considered, implying that h 0 = h00 � h, while a0 ¼ a00 � a � �hþ h=2 is the distance between the global
mid-plane of the structure and the mid-planes of the top/bottom face sheets.

The sandwich structural model is based on the following assumptions: (i) the face-sheets are composed
of orthotropic material laminae, the axes of orthotropy of the individual plies being rotated with respect to
the geometrical axes xa of the structure, (ii) the material of the core features transverse orthotropic pro-
perties, the axes of orthotropy being parallel to the geometrical axes xa, (iii) the core layer is capable of
carrying transverse shear stresses only, and as result we deal with a weak core, (iv) a perfect bonding be-
tween the face sheets and the core, and between the constituent laminae of the face sheets is postulated,
(v) the layers of the face sheets are assumed to be thin; as a result, transverse shear effects in the face sheets,
are neglected, (vi) the structure as a whole, as well as both the top and bottom laminated face sheets are
assumed to exhibit symmetry properties from both the mechanical and geometrical points of view, with re-
spect to both the mid-plane of the core layer and about their own mid-planes, and finally, (vii) a Lagrangian
description of the non-linear model of sandwich structures is adopted in conjunction with the implementa-
tion of the von-Kármán non-linear kinematic model and of initial geometric imperfections.

To be reasonably self-contained, in Appendix A, the basic equations of sandwich plate theory incorpo-
rating the anisotropy of the individual face sheets and transverse shear effects in the core layer are displayed
Fig. 1. Geometry of a flat sandwich panel.
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only to the extent that they are needed in the treatment and understanding of the subject considered in this
paper.
3. Blast loads induced by underwater and in-air explosions

Due to the presence of the core layer, the transmission of pressure waves through the sandwich panel
renders the problem of determination of the resultant unsteady pressure more intricate than in the case
of the monolithic/laminated panel counterparts. While in the latter case, the theory on which the determi-
nation of the pressure time- history on the front face of the panel follows the line established by Kirkwood–
Bethe–Cole (see Cole, 1965), in the former case, the ideas developed specifically for the case of a sandwich
panels by Hayman (1995), and used subsequently by Mäkinen (1999a,b) will be adopted here.

As it will be seen later, the pressure time-histories based on the previously mentioned structural models
feature significant quantitative and qualitative differences that affect the dynamic response of the panel in
question. Basically, the unsteady pressure model by Hayman (1995) represents an extension of that devised
for a monolithic/laminated panel, in the sense of the inclusion also of the pressure transmitted through the
core, reflected at the rear face of the sandwich panel, and then transmitted out into the water.

Having in view the large front of the explosion, the result obtained also by experiments, (see e.g. Houl-
ston et al., 1985), namely that the resulting pressure is uniformly distributed over the plate surface will be
adopted also in this study.

As a result, the total pressure in front of the sandwich panel can be represented in the form
p3ðtÞð� P ðtÞÞ ¼ P iðtÞ þ P r1ðtÞ þ P r2ðtÞ; ð1Þ

where Pi(t) denotes the free-field pressure due to the incident shock wave; Pr1(t) is the pressure reflected on
the front face, while Pr2(t) is the pressure transmitted into the core, reflected at the rear face and transmitted
out into the water.

Their expressions are, respectively, as follows:
� P iðtÞ ¼ qme�ðt�t1Þ=H; t P t1; ð2Þ

where qm denotes the peak pressure in the shock front; t � t1 is the time elapsed after the arrival of the
shock wave at the panel front surface, H is the exponential decay, t1 = R/c, where c denotes the speed
of sound in the sea water, while R is the stand-off distance.

For any type of explosive, qm and H are expressed in generic form in terms of Q (� explosive weight [kg])
and R (� the stand-off distance [m]), as
qm ¼ K1ðQ1=3=RÞA1 ðMPaÞ; H ¼ K2Q1=3ðQ1=3=RÞA2 ðmsÞ. ð2b; cÞ
As a result, for any specific explosive, constants K1, K2, A1 and A2 have to be prescribed correspondingly,
(see Shin and Geers, 1994; Mäkinen, 1999a,b)
� P r1ðtÞ ¼ B1e�at þ B2e�bt; ð3Þ

� P r2ðtÞ ¼ E1e�aðt�2�h=ccÞ þ ½E2 þ ðt � 2�h=ccÞE3�e�bðt�2�h=ccÞ þ E4e�cðt�2�h=ccÞ. ð4Þ

The expressions of the constants appearing in Eqs. (3) and (4) are provided next:
a ¼ 1=H; b ¼ ðqcþ qcccÞ=mf ; c ¼ qccc=mf ; ð5Þ

where q and c are the mass density and speed of sound in the water, respectively, mf is the mass of the front
face sheet per unit area, ccð�

ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=qc

p
) denotes the speed of sound in the core, where Ec and qc are the

Young�s modulus and mass density of the core material, respectively. In addition
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B2 ¼
2ðb� cÞqm

ðb� aÞ ; B1 ¼ qm � B2;

D1 ¼ �
2cðaþ cÞqm

ðb� aÞðc� aÞ ; D2 ¼ �
2cðbþ cÞqm

ðb� aÞðb� cÞ ; D3 ¼ �ðD1 þ D2Þ;

E1 ¼
2ðb� cÞD1

ðb� aÞ ; E4 ¼ 2D3; E2 ¼ �ðE1 þ E4Þ; E3 ¼ 2ðb� cÞD2.

ð6Þ
It should be remarked that the above equations that define the expression of the unsteady pressure apply
to both underwater and in-air explosions. However, in the former case the speed of sound and mass density
of the sea water at 20 �C are: c = 1476 m/s, q = 1009 kg/m3, while their in-air counterparts are c = 330 m/s
and q = 1.20 kg/m3. The large differences in the values of c and q in sea water and air turn out to have sig-
nificant implications on dynamic response.

As it will be revealed later, also inclusion of the core effects will bring considerable differences on the
pressure and structural time-histories in the two investigated cases of UNDEX and INEX.

In the simulations related to the dynamic response to INEX we are also considering the cases of the
sandwich panel impacted by a sonic-boom and a triangular blast. In a compact form, their expressions
(see Marzocca et al., 2001) that generalize the specialized ones (Librescu and Nosier, 1990) is
P ðtÞ ¼ qmð1� t=tpÞ½HðtÞ � dbHðt � rtpÞ�. ð7Þ
In (7), H(t) denotes the Heaviside step function, db is a tracer that takes the values 1 or 0 depending on
whether the sonic-boom or the triangular blast is considered, respectively, tp denotes the positive phase
duration of the pulse measured from the time of impact of the structure, r denotes the shock pulse length
factor. For r = 1, the sonic-boom reduces to a triangular explosive pulse, while for r = 2 it corresponds to a
symmetric sonic-boom pulse.

Within the INEX problem we will consider also the tangential blast to the panel surface in the direction
of the coordinate x1 in the form of a traveling-wave
P ðtÞ ¼ qmHðct � x1Þ expð�gðct � x1ÞÞ; ð8Þ
where c is the wave speed in the medium surrounding the structure, while g is an exponent determining the
blast decay.
4. Solution methodology

The governing equation system, Eqs. (A.19) and (A.20), in conjunction with the explicit form of the pres-
sure pulse and the boundary conditions have to be solved as to determine the dynamic response of the
panel, in terms of displacements g1, g2, v3, and of the Airy�s function /.

This constitutes an essential step toward determination of the full response time-history, that involves
that of strains and stresses as well. From the mathematical point of view, the problem at hand reduces
to the solution of a dynamic non-linear boundary-value problem.

Herein, the sandwich rectangular panel is assumed to be simply supported all over the contour. Consis-
tent with the order (twelve) of the governing system, six boundary conditions have to be prescribed at each
edge. Assuming the case of edges unloaded and immovable in the in-plane directions normal to the panel
edges, the boundary conditions (see Librescu et al., 1997a,b, 2000), are
n1 ¼ 0; N 12 ¼ 0; g1 ¼ 0; g2 ¼ 0; M11 ¼ 0; v3 ¼ 0 on x1 ¼ 0; L1 ð9a–fÞ
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and
n2 ¼ 0; N 12 ¼ 0; g2 ¼ 0; M22 ¼ 0; v3 ¼ 0 on x2 ¼ 0; L2. ð10a–fÞ

Due to the intricacy of the present boundary value problem, an approximate solution methodology

based on extended Galerkin method will be used. In a different context details of this method have been
supplied in Librescu et al. (1997a,b).

The conditions expressing the immovability conditions n1 = 0 and n2 = 0 at x1 = 0, ‘1 and x2 = 0, ‘2,
respectively, are fulfilled on an average sense (see Librescu, 1975; Librescu and Souza, 1993) as
Z L1

0

Z L2

0

ðon1Þ=ox1Þdx1 dx2 ¼ 0;

Z L1

0

Z L2

0

ðon2=ox2Þdx1 dx2 ¼ 0. ð11a; bÞ
These conditions in conjunction with the expression of e011, e0011 and e022, e0022 provided by Eqs. (A.8a) and
(A.10a), yield the fictitious edge loads N� 11 and N� 22 that render the edges x1 = 0, L1 and x2 = 0,L2,
immovable.

The expressions of transverse deflection and of initial geometric imperfection satisfying the simple sup-
ported boundary conditions are
v3ðx1; x2; tÞ ¼ wmnðtÞ sin kmx1 sin lnx2;

v
�

3ðx1; x2Þ ¼ w
�

mn sin kmx1 sin lnx2; m ¼ 1; 2; . . . ;M ; n ¼ 1; 2; . . . ;N ;
ð12a; bÞ
where km = mp/L1, ln = np/L2, wmn are the modal amplitudes, L1 and L2 are the panel side edges, while w
�

mn

are the model amplitudes of the initial geometric imperfection shape. Moreover, the stress function / is
expressed as, (see Librescu, 1975)
/ðxx; tÞ ¼ /1ðxx; tÞ �
1

2
ðN� 11x2

2 þ N� 22 x2
1Þ; ð13Þ
where N� 11;N� 22 represent the average compressive edge loads, whereas /1 is a particular solution. Replacing
Eqs. (12) and (13) into the compatibility equation (A.19) and solving the resulting non-homogeneous par-
tial differentiation equation yields the expression of /1 as
/1ðxa; tÞ ¼ A1ðtÞ cos 2kmx1 þ A2ðtÞ cos 2lnx2 � A3ðtÞ sin kmx1 sin lnx2. ð14Þ

Similarly, the two coupled equations, namely, Eqs. (A.20a) and (A.20b) can be solved to get
g1ðxx; tÞ ¼ B1ðtÞ cos kmx1 sin lnx2; g2ðxx; tÞ ¼ C1ðtÞ sin kmx1 cos lnx2. ð15Þ

The coefficients Ai (i = 1,2,3) in Eq. (14), as well B1 and C1 in Eq. (15) are function of the amplitudes

wmn(t) (see Librescu, 1975). These are not recorded here.
Following all the previous steps, replacing the expressions of /, v3, v

�
3, g1,g2, into the energy functional,

Eq. (A.11), and carrying out the indicated integrations results in a non-linear algebraic equation expressed
in terms of the modal amplitudes dmn(t)(� wmn(t)/H) as
P 1½dmn; d
�

mn;N� 11;N� 22� þ P 2½d2
mn; d

�
mn� ¼ P mnðtÞ ðm ¼ 1; . . . ;M ; n ¼ 1; . . . ;NÞ. ð16Þ
Here P1 and P2 are linear and quadratic polynomials in the unknown modal amplitudes whose coeffi-
cients depend on the material and geometric properties of the panel; d

�
mnð� w

�
mn=HÞ denotes the modal

imperfection amplitudes, while Pmn(t) are time-dependent functions that are obtained from the previously
defined pressure pulses. From Eq. (16) the time-dependent deflection response to specific pressure pulses
will be determined, wherefrom the time-dependent response of any quantity of interest, i.e. stress of stress
can be obtained.
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5. Numerical investigation and results

5.1. Validation of the structural model and of the solution methodology

First of all, in order to validate the performance of the present structural model and the accuracy of the
adopted solution methodology, the static response to a lateral uniform pressure, (p3 = 100 kPa), of a geo-
metrically non-linear simply-supported sandwich panel against the results supplied by Riber (1997), are pre-
sented in Table 1.

In this context, for the case considered in Riber (1997), the results of an analytical solution and of those
obtained via the finite difference method (labelled as FDM), that are supplied in his paper, are compared to
the ones obtained by the present structural model via the application of the previously described solution
methodology.

As remarked, the agreement with the predictions by Riber (1997) appears to be quite reasonable.

5.2. Results

Unless otherwise stated, the results will be generated by using the material properties listed in Table 2.
Moreover, the results reported here are obtained for a TNT explosive. In this case in Eqs. (2)–(6) the

following values of the parameters should be considered (see Mäkinen, 1999a,b), K1 = 52; K2 = 0.090
and A1 = 1.18 and A2 = �0.18.

As concerns the architecture of the sandwich wall unless otherwise stated, it follows the rule [0/90/0/90/
0/core/0/90/0/90/0].

First of all, it is worthwhile to display the pressure time-histories generated by an underwater explosion,
at various distances from the front face of the sandwich panel, by including, (Fig. 2a), and discarding (Fig.
2b) the effects of the transmission of the pressure through the core.

The results emerging from these plots reveal significant qualitative and quantitative differences. Among
others: (a) in the case of the inclusion of the core effects, the time at which the cavitation occurs (i.e. the time
corresponding to the instant when the resultant pressure becomes a zero-valued quantity), is almost double
to that corresponding to the discard of the core effects, (b) whereas in the case of the discard of the core
Table 1
Comparison of maximum response of a sandwich panel subjected to a uniform lateral pressure p3 = 100 KPa

Displacement (mm) Bottom face
(MPa)

Upper face (MPa) Core (MPa)

r11 r22 r11 r22 r13 r23

Present 10.6 30.1 28.3 �27.1 �25.4 0.62 0.67
Analytical 10.4 33.8 30.4 �29.0 �25.3 0.70 0.80

Solution [Riber]
FDM [Riber] 10.0 31.1 28.6 �26.1 �23.0 0.66 0.76

Table 2
Material properties for face sheets and core

Face sheets Material E1 (GPa) E2 (GPa) G12 (GPa) m12 qf (kg/m3)
Graphite/epoxy 207 5.17 2.55 0.25 1588.22

Core Material G13 (MPa) G23 (MPa) qc (kg/m3)
PVC foam 11 11 50
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Fig. 2. (a) Dimensionless pressure time-history for various distances from the front panel surface in UNDEX. Effect of the core
included (Q = 30 kg, R = 10 m, qf/qc = 5). (b) Counterpart of Fig. 2a when the effect of the core is discarded (Q = 30 kg, R = 10 m,
qf/qc = 5).
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effects, the cavitation can be expected to occur first at the front panel surface, in the case of the incorpo-
ration of the core effects, two cavitation zones are likely to appear, almost at the same time. They are lo-
cated adjacent to the panel surface, and away from the sandwich front face, in the present case at
x3 = �150 mm, and finally, (c) the results supplied in Fig. 2a and b are in excellent agreement with the ones
by Hayman (1995) and Mäkinen (1999a,b).

Since the pressure time-history depends not only on the size of the explosive charge and of the stand-off
distance, but also on the properties of the sandwich structure, in Fig. 3a and b, the effects of qf/qc on pres-
sure time-history, for the case of the inclusion and discard of the transmission of the pressure through the
core are presented. From these plots it appears that in the case of a heavier core (implying the increase of
qc), the benefice of a delay of the occurrence of cavitation will occur.

Moreover, for a fixed qf, the increase of qc is accompanied in both cases by an increase of the linear im-
pulse yielding in turn an increase of the severity of the dynamic response.

The results supplied in Figs. 2 and 3 emphasize the fact that incorporation of the effects of the core in the
evaluation of the pressure time-history on sandwich construction constitutes an essential requirement for an
accurate prediction of their dynamic response, and consequently, of their reliable design.

However, as Fig. 4a reveal, in the case of the INEX, due to the severity of the blast, the inclusion/discard
of the core effects does not change the character of the time variation of the blast loading. This implies that
the dynamic response of the sandwich panel in an INEX can be carried out by discarding the transmission
of the pressure through the core.
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Fig. 3. Normalized pressure time-history on the front face of a sandwich panel due to an UNDEX, in the case of the inclusion of the
effects in the core (a) and of their discard (b) (Q = 30 kg, R = 10 m, qf = 1528 kg/m3).
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Fig. 4b displaying the dynamic response to the INEX, reflects in full this fact. Herein, as well as in
the next results, the notations have the meaning: w � v

�
3ðL1=2; L2=2; tÞ ) central panel deflection;

d0�3ðL1=2; L2=2Þ=H ) dimensionless central geometric imperfection; while f � C=2m0x1 ) structural
damping parameter, where x1 is the undamped fundamental frequency of the structural system.

It should be noticed that the character of the pressure time-history in the case of the INEX as
emerging from Fig. 4a, appears to be in full agreement with that obtained via experiments by Boyd
(2000).

Needless to say, in the case of underwater explosions, the differences in the response predictions in the
case of the inclusion/discard of the core effects are significant, and hence, the effects induced by the pressure
transmission in the core have to be taken into consideration.

In Fig. 5, the effects of the explosive weight in UNDEX on deflection time-history is presented. It is seen
that the increase of Q yields, as expected, an increase of the deflection amplitude. The same is valid when
the mass density of the core is increasing.

In this sense, the results of Fig. 6, that are consistent with the trend of variation of the transient pressure
for selected values of qf/qc, reveal that the increase of the core density yields an increase of the panel deflec-
tion amplitude. It should be noticed that this result is in agreement with the qualitative ones reported by
Hayman (1995).

Fig. 7 highlights the effects of the stand-off distance on the deflection time-history to an underwater
explosion.

It is seen that with the increase of the stand-off distance there is not only a decrease in the amplitudes of
the response, but also a shift of their amplitudes towards larger times.
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Fig. 5. Effects of the explosive weight on dimensionless deflection time-history of the center of the sandwich panel in UNDEX
(L1/H = 15, d0 = 0.2, f = 0.05, R = 10 m).
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In Fig. 8 the effects of the thickness of the core layer on the deflection time-history to an UNDEX is
presented. It is seen that the increase of the core thickness yields a decrease of oscillation amplitudes,
and also a shift of their amplitudes toward larger times. This trend is similar to that reported by Hayman
(1995) and Mäkinen (1999a,b).

In Fig. 9 there are shown the effects of the ply-angle of face sheets, for the sandwich panel characterized
by the stacking sequence [h/�h/h/�h/h/core/h/�h/h/�h/h].
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Fig. 7. Effects of the stand-off distance on dimensionless deflection time-history of the center of sandwich panel in UNDEX
(L1/H = 15, d0 = 0.2, f = 0.05, Q = 30 kg).

0 4 8 12
Time (msec.)

-0.5

-1

0

0.5

1

D
im

en
si

on
le

ss
 d

ef
le

ct
io

n 
(w

/H
)

Fig. 8. Effects of the core thickness on dimensionless deflection time-history of the sandwich panel (L1/H = 15, d0 = 0.2, f = 0.05,
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In this case, one considers that the core is orthotropic in transverse shear and that G23 ¼ 5G13. The re-
sults from this plot reveal that h = 45 � is the best ply-angle from the dynamic response point of view. How-
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Fig. 9. Effects of ply-angle of face-sheets on dimensionless deflection time-history of the sandwich panel in UNDEX (L1/H = 20,
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ever, the results not displayed here reveal that, depending on the relative value of G13, different ply-angles
can provide an improved dynamic response.

Fig. 10 reveals that the increase of the orthotropicity degree in transverse shear of the core, (measured in
terms of the ratio G23=G13Þ, plays a beneficial effect from the dynamic response point of view.

In Figs. 11 and 12, there are shown the effects of the stand-off and weight charge, respectively, on the
velocity time-history of the center of the panel subjected to an underwater explosion, while in Figs. 13
and 14, their in-air explosion counterparts are displayed. The values of the velocity response in UNDEX
as presented here are in agreement with those report by Jiang and Olsen (1994). The considerable increase
of the severity of the in-air explosion as compared to the underwater one that is due to the fact that c and q
are much lower in the former case than in the latter one, clearly emerges from these plots.

Figs. 6, 8, 11 and 12, have emphasized the significant role played by the stand-off distance and explosive
charge on deflection and velocity time-history of the panel central point when subjected to an UNDEX.
However, as seen from Figs. 15 and 16, their effect on dimensionless acceleration time-history of the central
point of the sandwich structure is really dramatic. For each of considered cases, their peak values have been
indicated in the inset of the figures. Notice that the non-dimensionalization of acceleration follows that
used by Fagel (1971).
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Fig. 10. Effects of orthotropicity degree of the core on dimensionless deflection time-history of the sandwich panel in UNDEX
(L1/H = 15, d0 = 0.2, f = 0.05, Q = 30 kg, R = 10 m, G13 = 11 MPa).
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Fig. 13. The counterpart of Fig. 11 for an INEX (L/H = 15, Q = 30 kg, d = 0.2, f = 0.05).
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As is clearly seen, a dimension of the stand-off distance by a factor of two can increase in the same pro-
portion and even more the maximum peak acceleration. However, as time unfolds, the acceleration ampli-
tude, corresponding to various values of R, decay, and also the differences in their amplitudes.

The same trend, but less dramatic appears in connection with the increase of the explosive charge. A
similar trend obtained via experiments was reported by Boyd (2000).
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Fig. 14. The counterpart of Fig. 12 for an INEX (L/H = 15, R = 10 m, d0 = 0.2, f = 0.05).
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In Figs. 17 and 18 there are presented the dimensionless center deflection time-histories of the panel sub-
jected in-air to a tangential shock-wave as influenced by the blast decay g and qm. The results reveal that the
increase of g and of qm yields a decrease and, respectively, an increase of the response amplitudes.
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Finally, in Fig. 19 the effects of dimensionless triangular blast (r = 1) and of a symmetric sonic-boom
(r = 2) on the center-panel deflection time-history are presented. It is seen that the sonic-boom pulse yields
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a more severe response than the triangular pulse. However, as time unfolds, the difference between the two
responses tends to diminish, and finally, to become immaterial.
6. Conclusions

The problem of the dynamic response of geometrically non-linear sandwich flat panels including initial
geometric imperfection and subjected to explosive blast loadings produced by both underwater and in-air
explosions has been addressed. The implications of a number of structural and geometrical characteristics
of the sandwich panel, as well as of the ones related to the respective blasts have been highlighted and re-
lated conclusions have been drawn. Consideration of the core effects in the cases of the UNDEX and
INEX, has been shown to result in qualitative and quantitative different results, from both the pressure
time-history and of the structural response points of view.

The obtained results can be extended without any difficulty as to determine the time-histories of strain
and stress components at various points of the sandwich structure. These items are essential toward deter-
mining the failure of the structure. Other issues that have still to be addressed are the ones related to the
incorporation of the cavitation effects on the dynamic response of submerged sandwich panels exposed to
an explosion, and also to the effects played by transverse normal compressibility of the core layer. For such
a structural model, see the papers by Hohe and Librescu (2003, 2004). It is hoped that the results supplied
here involving the transient response of sandwich structures to underwater and in-air explosions will be
instrumental toward a reliable design of naval and aeronautical structures exposed to explosive blasts.
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Appendix A

A.1. Kinematics

Several basic kinematic relationships obtained by specializing for the problem at hand those developed
in the monograph by Librescu (1975) and in the paper by Librescu et al. (1997a,b), will be supplied next.

A.1.1. The 3-D displacement field in the face sheets and core

In agreement with the stipulated assumptions, the 3-D distribution of the displacement field fulfilling the
kinematic continuity conditions at the interfaces between the core and face sheet results as
V 0xðxa; x3Þ ¼ naðxaÞ þ gaðxaÞ � ðx3 � aÞov3ðxaÞ=oxx; ð�h 6 x3 6
�hþ hÞ; ðA:1aÞ

V 03ðxa; x3Þ ¼ v3ðxaÞ; ðA:1bÞ

V xðxa; x3Þ ¼ nxðxaÞ þ ðx3=�hÞ gxðxaÞ þ ðh=2Þov3ðxaÞ=oxx;f g; ð��h 6 x3 6
�hÞ; ðA:2aÞ

V 3ðxa; x3Þ ¼ v3ðxaÞ ðA:2bÞ
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and
V 00xðxa; x3Þ ¼ nxðxaÞ � gxðxaÞ � ðx3 þ aÞov3ðxaÞ=oxx; ð��h� h 6 x3 6 ��hÞ; ðA:3aÞ

V 003ðxa; x3Þ ¼ v3ðxaÞ. ðA:3bÞ
In these equations, Vi(xa,x3) are the 3-D displacement components in the directions of coordinates xi.
In addition, in the previously displayed equations
nx ¼ ðbV 0x þ bV 00xÞ=2; gx ¼ ðbV 0x � bV 00xÞ=2; ðA:3c; dÞ
denote the 2-D average in-plane displacements and half difference of in-plane displacements, respectively,
where bV 0x and bV 00x denote the in-plane displacements of the points of the mid-planes of the bottom and top
face sheets, respectively.

It should be mentioned that in the dynamic case, as considered in this paper, the displacement quantities
are functions of time, as well. Although this dependence was not explicitly specified, this is automatically
implied.

In the previous and the following equations, the Greek and Latin indices have the range 1, 2, and 1, 2, 3,
respectively, and unless otherwise stated, Einstein�s summation convention over the repeated indices is em-
ployed. In addition, (Æ),i denotes partial differentiation with respect to coordinate xi.

A.2. Distribution of strain quantities across the shell thickness

The structure is assumed to feature a stress-free small initial geometric imperfection V
�

3ð� v
�

3ðxaÞÞ that is
uniform throughout the panel thickness. Adopting the von-Kármán kinematic approximation in the Green-
Lagrange strain tensor that yields,
2eij ¼ V i;j þ V j;i þ V 3;iV 3;j þ V 3;iV
�

3;j þ V 3;jV
�

3;i ðA:4Þ
and using (A.4) in conjunction with Eqs. (A.1)–(A.3), one obtains the distribution of 3-D strain quantities
eij (� eij(x1,x2,x3)) across the sandwich wall thickness.

Their expressions are as follows:
In the bottom face-sheets
e011 ¼ e011 þ ðx3 � aÞj011; ð1 ¢ 2Þ
2e012 ¼ c012 þ ðx3 � a0Þj012.

ðA:5a; bÞ
In the weak core layer
2�e13 ¼ �c13; ð1 ¢ 2Þ ðA:6Þ
In the top face-sheets
e0011 ¼ e0011 þ ðx3 þ aÞj0011; ð1 ¢ 2Þ
2e0012 ¼ c0012 þ ðx3 þ a00Þj0012.

ðA:7a; bÞ
The sign (1 ¢ 2) accompanying the previous and next equations indicates that the expressions of strain
quantities not explicitly written can be obtained from the ones that are displayed, by replacing subscript 1
by 2, and vice versa.
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In these equations e11, e22, e12(� c12/2) and e13(� c13/2), e23 = (c23/2) denote the 2-D tangential and the
transverse shear strain measures, respectively. Their expressions in terms of the 2-D displacement measures
in the face-sheets and core are supplied next.

A.2.1. 2-D strain–displacement relationships
Bottom face sheets
e011 ¼ n1;1 þ g1;1 þ
1

2
v2

3;1 þ v3;1v
�

3;1; ð1 ¢ 2Þ

c012 ¼ n1;2 þ n2;1 þ g1;2 þ g2;1 þ v3;1v3;2 þ v
�

3;1v3;2 þ v3;1v
�

3;2;

j011 ¼ �v3;11; ð1 ¢ 2Þ
j012 ¼ �2v3;12.

ðA:8a–dÞ
Weak core layer
�c13 ¼
1
�h

g1 þ
1

2
hv3;1

� �
þ v3;1; ð1 ¢ 2Þ ðA:9Þ
Top face sheets
e0011 ¼ n1;1 � g1;1 þ
1

2
v2

3;1 þ v
�

3;1v3;1; ð1 ¢ 2Þ

c0012 ¼ n1;2 þ n2;1 � g1;2 � g2;1 þ v3;1v3;2 þ v
�

3;1v3;2 þ v3;1v
�

3;2;

j0011 ¼ �v3;11; ð1 ¢ 2Þ
j0012 ¼ �2v3;12.

ðA:10a–dÞ
As a mere remark, due to inclusion of geometrical non-linearities, the stretching-bending coupling is in-
volved in the kinematic equations, Eqs. (A.8)–(A.10).

A.3. Equations of motion and boundary conditions

Hamilton�s principle is used to derive the equations of motion and the boundary conditions of geomet-
rically non-linear theory of sandwich flat panels. This may be stated as
dJ ¼ d
Z t1

t0

U � W � Tð Þdt ¼ 0; ðA:11Þ
where t0, t1 are two arbitrary instants of time; U, W and T denote the strain energy, the work done by sur-
face tractions, edge loads and body forces, and the kinetic energy of the 3-D body of the sandwich struc-
ture, respectively, while d denotes the variation operator.

The expressions of U, W and T that can be found in the papers by Librescu et al. (1997a,b) and Hause
et al. (1998), are not displayed here.

From (A.11) considered in conjunction with the proper expression of various energy quantities and with
the strain–displacement relationships (used as subsidiary conditions), carrying out the integration with re-
spect to x3 and integrating by parts wherever necessary as to relieve the virtual displacements of any dif-
ferentiation, and invoking the arbitrary and independent character of the variations dg1, dg2, dn1, dn2

and dv3 throughout the entire domain of the plate and within the time interval [t0, t1]; using the expression
of global stress resultants and stress couples (to be defined later), one derive the equations of motion and
the boundary conditions associated with the weak core sandwich flat panels.
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By retaining only the transversal load, and the transverse inertia and transverse viscous damping, one
obtain

The equations of motion:
dn1 : N 11;1 þ N 12;2 ¼ 0;

dn2 : N 22;2 þ N 12;1 ¼ 0;

dg1 : L11;1 þ L12;2 � N 13 ¼ 0;

dg2 : L22;2 þ L12;1 � N 23 ¼ 0;

dv3 : N 11ðv3;11 þ v
�

3;11Þ þ 2N 12ðv3;12 þ v
�

3;12Þ þ N 22ðv3;22 þ v
�

3;22Þ þ ðM11;11 þ 2M12;12 þM22;22Þ

þ a=�hðN 13;1 þ N 23;2Þ þ p3ðxa; tÞ ¼ m0€v3 þ C _v3;

ðA:12a–eÞ
where C is the transverse viscous damping coefficient, m0 is the reduced mass per unit area of the panel mid-
plane, while the overdots denote time-derivatives.

In addition, the boundary conditions that are consistent to the previously displayed equations of motion
are as follows:
Nnn ¼ N� nn or nn ¼ n
�n;

Nnt ¼ N� nn or nt ¼ n
�t;

Lnn ¼ L�nn or gn ¼ g
�n ;

Lnt ¼ L�nt or gt ¼ g
�t;

Mnn ¼ M� nn or v3;n ¼ v�3;n;

Nntðv3;t þ v
�

3;tÞ þ Nnnðv3;n þ v
�

3;nÞ þMnn;n þ 2Mnt;t þ ða=�hÞN n3 ¼ M� nt;n þ N� n3 or v3 ¼ v�3.

ðA:13a–fÞ
In these equations subscripts n and t are used to designate the normal and tangential in-plane directions
to an edge and, hence, n = 1 when t = 2, and vice versa. In addition, the symbol indicates that no sum-
mation over the indices n and t is implied, while the terms underscored by a tilde denote prescribed quan-
tities. It is readily seen that for the present sandwich model of flat panels six boundary conditions should be
prescribed at each edge, and consistent with this, a twelfth order governing equation system should result.
The displayed equations of motion and static boundary conditions are expressed in terms of the global 2-D
stress resultants and stress couples
N 11 ¼ N 011 þ N 0011; N 12 ¼ N 012 þ N 0012; L11 ¼ �hðN 011 � N 0011Þ; ð1 ¢ 2Þ
L12 ¼ �hðN 012 � N 0012Þ; M11 ¼ M 0

11 þM 00
11; M12 ¼ M 0

12 þM 00
12;

ðA:14a–eÞ
where ðN 0ab;M
0
abÞ ðN 00ab;M

00
abÞ, are the 2-D stress resultants and stress couples measures associated with the

lower and upper face sheets, respectively, while N a3 are the transverse shear stress resultants associated with
the core layer. Their expressions are as follows:
fN 0ab;M
0
abg ¼

XN

k¼1

Z ðx3Þk

ðx3Þk�1

ðS0abÞkf1; x3 � agdx3; ðA:15aÞ

N a3 ¼
Z �h

��h
Sa3 dx3 ða; b ¼ 1; 2Þ. ðA:15bÞ
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In Eqs. (A.15) Sij are the components of the second-order Piola-Kirchhoff stress tensor, N is the number
of constituent layers in the bottom face sheets, (equal, in the present case, to that in the top faces), whereas
(x3)k and (x3)k�1 are the distances from the global mid-plane of the structure to the upper and lower inter-
faces of the kth layer, respectively.

As concerns the 2-D constitutive equations these are provided next.

A.4. Constitutive equation

The constitutive equations associated with the bottom face sheets
N 011 ¼ A011e
0
11 þ A012e

0
22 þ A016c

0
12; ð1 ¢ 2Þ

N 012 ¼ A016e
0
11 þ A026e

0
22 þ A066c

0
12;

M 0
11 ¼ F 011K 011 þ F 012K 022 þ F 016c

0
12; ð1 ¢ 2Þ

M 0
12 ¼ F 016K 011 þ F 026K 022 þ F 066c

0
12.

ðA:16a–dÞ
The partially inverted form of constitutive equations is obtained from the above equations by solving
these for the tangential strains eab and of their representation in terms of Nab. The counterparts of A0ab

in the representation of eab are denoted by A�0ab, where A�0ab ¼ A�00ab � A�ab.
For the soft core layer considered as an orthotropic body (the axes of orthotropy coinciding with the

geometrical axes), the pertinent constitutive equations reduce to
N 13 ¼ 2�hK
2
Q55�c13; N 23 ¼ 2�hK

2
Q44�c23; ðA:16e; fÞ
where Q55 � G13 and Q44 � G23 are the transverse shear moduli of the core layer material, while K
2

is the
transverse shear correction factor.

A.5. Governing system

For the problem at hand, the mixed representation of the governing equations is used. This formulation
is done in terms of the Airy�s potential function /, and the 2-D displacement measures v3, g1 and g2. To this
end, by expressing the stress resultants in terms of the Airy�s potential function /(� /(xx,t)) as
N ab ¼ caxcbq/;xq; ðA:16Þ
the equilibrium Eq. (12a,b) are identically fulfilled, where cab denotes the 2-D permutation symbol. Having
in view that by virtue of (A.16), the two equilibrium equations (A.12a,b) are eliminated, in order to ensure
single valued tangential displacements, the compatibility equation for the tangential strain measures has to
be fulfilled.

For flat sandwich panels featuring a weak core this equation is
e11;22 þ e22;11 � c12;12 � 2v2
3;12 þ 2v3;11v3;22 þ 2v

�
3;11v3;22 þ 2v3;11v

�
3;22 � 4v3;12v

�
3;12 ¼ 0; ðA:17Þ
where
e11 ¼ e011 þ e0011; e22 ¼ e022 þ e0022; c12 ¼ c012 þ c0012. ðA:18a–cÞ
Making use of the partially inverted form of constitutive equations considered in conjunction with
(A.16), the compatibility equation, Eq. (A.17), can be expressed in terms of the basic unknown functions
v3 and / as
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A�22/;1111 þ A�11/;2222 � 2A�16/;1222 � 2A�26/;2111 þ ðA�66 þ 2A�12Þ/;1122 � 2v2
3;12 þ 2v3;11v3;22 þ 2v

�
3;11v3;22

þ 2v3;11v
�

3;22 � 4v3;12v
�

3;12 ¼ 0. ðA:19Þ
On the other hand, the equilibrium equations (A.12c-e) represented in terms of displacement quantities
and of the Airy�s function are
A11g1;11 þ A16g2;11 þ A66g1;22 þ ðA12 þ A66Þg2;12 þ 2A16g1;12 þ A26g2;22 � ð2K
2
G13=�hÞðg1 þ av3;1Þ ¼ 0;

ðA:20aÞ

A22g2;22 þ A26g1;22 þ A66g2;11 þ ðA12 þ A66Þg1;12 þ 2A26g2;12 þ A16g1;11 � ð2K
2
G23=�hÞðg2 þ av3;2Þ ¼ 0;

ðA:20bÞ

/;22ðv3;11 þ v
�

3;11Þ � 2/;12ðv3;12 þ v
�

3;12Þ � F 11v3;1111 � F 22v3;2222 � 4F 16v3;1112 � 4F 26v3;1222

� 2ðF 12 þ 2F 66Þv3;1122 þ ð2K
2
a=�hÞfG13ðg1;1 þ av3;11Þ þ G23ðg2;2 þ av3;22Þg � m0€v3 � C _v3 þ p3 ¼ 0.

ðA:20cÞ
In these equations, by virtue of the structural symmetry of the sandwich panel, the stiffness quantities
Aab � ðA0ab ¼ A00abÞ; F ab � ðF 0ab ¼ F 00abÞ; ðA:21a; bÞ
whereas the stiffness quantities A�ab represent the inverted counterparts of Aab.
Herein, for the bottom face sheets
fA0xq; ð� A0qxÞ;B0xqð� B0qxÞ; D0xqð� D0qxÞg ¼
XN

k¼1

Z ðx3Þk

ðx3Þk�1

ðbQ0xqÞðkÞð1; x3; x2
3Þdx3; ðx; q ¼ 1; 2; 6Þ ðA:21cÞ
and
F 0xqð� F 0qxÞ ¼ D0xq � 2aB0xq � a2A0xq. ðA:21dÞ
For the top face sheets, in Eqs. ((A.21)) the single prime should be changed in double primes and a

by �a.
By virtue of the symmetry with respect to the global mid-surface of the panel, bQ 0xq ¼ bQ00xq, wherebQxqð� bQqx ¼ Qxq � Qx3Qq3=Q33Þ. For more details about the derivation of these equations the reader is

referred to Librescu et al. (1997a,b).
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